Atlantis Aquarium Home

   
 
Research
Aquarium Projects
Field Projects
Partner Projects
      Current
      Completed
Publications
Photo Gallery

About Atlantis AquariumResearchNewsroomNewsletter
Visitor InformationExhibitsAquatic AdventuresKidZoneSchools and GroupsCatering and Facility RentalRescue CenterSponsors

Current Partner Projects

Long Island Aquarium staff members often participate in research projects conducted in partnership with professionals from other leading institutions. These projects play a vital role in expanding our knowledge of particular marine species.

Seasonal Movements of Sand Tiger Sharks (Carcharias taurus) in the Western Atlantic Ocean

Partnered with Hans Walters/Wildlife Conservation Society/New York Aquarium.

Description
The goal of this project is to clarify the seasonal movement patterns of sand tiger sharks in the western Atlantic Ocean. Since December 2000, 23 sharks have been tagged and released with Pop-Up Archival Electronic Transmitters off of the coasts of New York, New Jersey, North Carolina, and South Carolina.

Sand Tiger Tracking Program
The study of the movements of juvenile sharks – which are found in local New York waters in the late spring/early summer – is a crucial component of this project. From 2001-2003, Long Island Aquarium donated surplus juvenile sand tigers purchased from local fishermen, as well as vessels and crew to release tagged specimens back into the ocean. Long Island Aquarium has offered to continue their support in the tagging efforts for juvenile sharks.

Carcharias taurus is a depleted and protected species that migrates through waters governed by various state laws, which sometimes differ from federal law. Sand tigers, like many other large Atlantic coastal sharks, may also move across international boundaries.  This ongoing study will provide an understanding of the marine habitats occupied by C. taurus at various times of the year. Such bio-geographical information is critical in order to determine where the species is most vulnerable to depletion from over-fishing or habitat destruction. This knowledge will enable the development of better and more consistent conservation strategies for sand tiger sharks in the western Atlantic Ocean. With increasing concern over the instability of shark populations worldwide, the success of this project will encourage the use of satellite telemetry in conservation-related studies of other potentially depleted shark species.

Studying the Biology of Chain Catsharks (Scyliorhinus retifer)

Description
The study of the biology of a deep sea shark, the chain catshark (Scyliorhinus retifer), that inhabits the continental shelf and slope (at depths of 100-400 meters) from Nova Scotia to Nicaragua. 

Deep Sea Catshark Research
The studies currently underway include:

Partnered with Dr. John Morrissey, Ph.D/Hofstra University.

  • The biggest myth in shark science is that sharks can be identified using their teeth or scales. The truth is, however, that teeth and scale morphology changes with location within the mouth or on the body, and with time (i.e., juvenile teeth/scales are shaped differently from those of adults). We use Scanning Electron Microscopy to examine the teeth and scales of male and female chain catsharks of all ages to show that tooth and scale morphology are too variable to provide useful taxonomic information.

  • The diet of this small shark is virtually unknown. The stomach contents of catsharks that are landed as by-catch in local commercial fisheries are examined to determine their prey preferences in their natural habitat.

  • An in-house colony of more than 100 chain catsharks is maintained to dispel another myth that sharks are insatiable predators. We are determining exactly how much food each individual consumes each day. Then, by comparing their daily intake to their weight gain, we will determine their assimilation efficiency, and consider if this important aspect of metabolism is affected by sex of shark, age of shark, or water temperature.

  • Our catshark colony also enables study of various aspects of the reproduction, development and growth of these egg-laying sharks. By monitoring the members of our colony closely, we will determine number of eggs deposited by each female, interval between batches of eggs from one female, gestation time for the eggs, developmental sequence for the embryos within the egg case, size of young at time of hatching, growth rate of hatchlings, age at maturity and size at maturity. Moreover, by taking small blood samples, highlights of the above reproductive cycle can be correlated with concentrations of sexual hormones in the plasma of both sexes. Finally, because female catsharks store sperm for up to three years after mating, we can use genetic techniques to determine the paternity of their young. Are all of a female’s pups fathered by just one male?  If they are fathered by more than one male, is it random or does the sperm from one male out-compete the sperm from other males to fertilize a disproportionate number of her eggs?